Spread the love
A robot is located at the top-left corner of a m x n grid. It can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid.
How many possible unique paths are there?
Java Solution 1 – DFS
A depth-first search solution is pretty straight-forward. However, the time of this solution is too expensive, and it didn’t pass the online judge.
public int uniquePaths(int m, int n) {
return dfs(0,0,m,n);
}
public int dfs(int i, int j, int m, int n){
if(i==m-1 && j==n-1){
return 1;
}
if(i<m-1 && j<n-1){
return dfs(i+1,j,m,n) + dfs(i,j+1,m,n);
}
if(i<m-1){
return dfs(i+1,j,m,n);
}
if(j<n-1){
return dfs(i,j+1,m,n);
}
return 0;
}
Java Solution 2 – Dynamic Programming
public int uniquePaths(int m, int n) {
if(m==0 || n==0) return 0;
if(m==1 || n==1) return 1;
int[][] dp = new int[m][n];
//left column
for(int i=0; i<m; i++){
dp[i][0] = 1;
}
//top row
for(int j=0; j<n; j++){
dp[0][j] = 1;
}
//fill up the dp table
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
Java Solution 3 – Dynamic Programming with Memorization
public int uniquePaths(int m, int n) {
int[][] mem = new int[m][n];
//init with -1 value
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
mem[i][j]=-1;
}
}
return helper(mem, m-1, n-1);
}
private int helper(int[][] mem, int m, int n){
//edge has only one path
if(m==0||n==0){
mem[m][n]=1;
return 1;
}
if(mem[m][n]!=-1){
return mem[m][n];
}
mem[m][n] = helper(mem, m, n-1) + helper(mem, m-1, n);
return mem[m][n];
}