Spread the love
Java Solution
This problem can be solved by BFS. We define one matrix for tracking the distance from each building, and another matrix for tracking the number of buildings that can be reached.
public int shortestDistance(int[][] grid) {
int[][] distance = new int[grid.length][grid[0].length];
int[][] reach = new int[grid.length][grid[0].length];
int numBuilding = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
helper(grid, distance, reach, i, j);
numBuilding++;
}
}
}
int result = Integer.MAX_VALUE;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 0 && reach[i][j] == numBuilding) {
result = Math.min(result, distance[i][j]);
}
}
}
return result == Integer.MAX_VALUE ? -1 : result;
}
private void helper(int[][] grid, int[][] distance, int[][] reach, int i, int j) {
int[] dx = {-1, 0, 1, 0};
int[] dy = {0, 1, 0, -1};
//two queue, one for direction, one for distance tracking
LinkedList<int[]> q = new LinkedList<>();
LinkedList<Integer> qDist = new LinkedList<>();
q.offer(new int[]{i, j});
qDist.offer(1);
while (!q.isEmpty()) {
int[] head = q.poll();
int dis = qDist.poll();
for (int k = 0; k < 4; k++) {
int x = head[0] + dx[k];
int y = head[1] + dy[k];
if (x >= 0 && y >= 0 && x < grid.length && y < grid[0].length && grid[x][y] == 0) {
grid[x][y] = -1;
q.offer(new int[]{x, y});
qDist.offer(dis + 1);
distance[x][y] += dis;
reach[x][y]++;
}
}
}
for (int m = 0; m < grid.length; m++) {
for (int n = 0; n < grid[0].length; n++) {
if (grid[m][n] == -1) {
grid[m][n] = 0;
}
}
}
}