Spread the love
Given two sparse matrices A and B, return the result of AB.
You may assume that A’s column number is equal to B’s row number.
1. Naive Method
We can implement Sum(A_ik * B_kj) -> C_ij as a naive solution.
public int[][] multiply(int[][] A, int[][] B) {
//validity check
int[][] C = new int[A.length][B[0].length];
for(int i=0; i<C.length; i++){
for(int j=0; j<C[0].length; j++){
int sum=0;
for(int k=0; k<A[0].length; k++){
sum += A[i][k]*B[k][j];
}
C[i][j] = sum;
}
}
return C;
}
Time complexity is O(n^3).
2. Optimized Method
From the formula: Sum(A_ik * B_kj) -> C_ij
We can see that when A_ik is 0, there is no need to compute B_kj. So we switch the inner two loops and add a 0-checking condition.
public int[][] multiply(int[][] A, int[][] B) {
//validity check
int[][] C = new int[A.length][B[0].length];
for(int i=0; i<C.length; i++){
for(int k=0; k<A[0].length; k++){
if(A[i][k]!=0){
for(int j=0; j<C[0].length; j++){
C[i][j] += A[i][k]*B[k][j];
}
}
}
}
return C;
}
Since the matrix is sparse, the time complexity is ~O(n^2) which is much faster than O(n^3).